Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124275, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615419

RESUMO

Peroxynitrite (ONOO-) is one of the most significant reactive oxygen species (ROS) in living cells. Zn2+ in living cells plays an essential part in different physiological processes. The abnormal concentration of ONOO- and Zn2+ in living cells are related to many kinds of diseases, such as anemia, epilepsy, diarrhea, Alzheimer's disease, and so on. The relationship of ONOO- and Zn2+ in living cells when the relative disease occurs remains unknown. So we develop the first probe H-1 for detecting ONOO- and Zn2+ at the same time. The probe H-1 shows high selectivity, good anti-interference capability, low detection limit and short response time to ONOO- and Zn2+. When the probe was applied to detect ONOO- and Zn2+ in HeLa cells, we could observe the fluorescence changing in the green and blue channels separately without interference in real time. It has the potential to employ the relation of ONOO- and Zn2+ in some disease mechanism research.

2.
Zool Res ; 45(2): 355-366, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485505

RESUMO

Testosterone is closely associated with lipid metabolism and known to affect body fat composition and muscle mass in males. However, the mechanisms by which testosterone acts on lipid metabolism are not yet fully understood, especially in teleosts. In this study, cyp17a1-/- zebrafish ( Danio rerio) exhibited excessive visceral adipose tissue (VAT), lipid content, and up-regulated expression and activity of hepatic de novo lipogenesis (DNL) enzymes. The assay for transposase accessible chromatin with sequencing (ATAC-seq) results demonstrated that chromatin accessibility of DNL genes was increased in cyp17a1-/- fish compared to cyp17a1+/+ male fish, including stearoyl-CoA desaturase ( scd) and fatty acid synthase ( fasn). Androgen response element (ARE) motifs in the androgen signaling pathway were significantly enriched in cyp17a1+/+ male fish but not in cyp17a1-/- fish. Both androgen receptor ( ar)-/- and wild-type (WT) zebrafish administered with Ar antagonist flutamide displayed excessive visceral adipose tissue, lipid content, and up-regulated expression and activity of hepatic de novo lipogenesis enzymes. The Ar agonist BMS-564929 reduced the content of VAT and lipid content, and down-regulated acetyl-CoA carboxylase a ( acaca), fasn, and scd expression. Mechanistically, the rescue effect of testosterone on cyp17a1-/- fish in terms of phenotypes was abolished when ar was additionally depleted. Collectively, these findings reveal that testosterone inhibits lipid deposition by down-regulating DNL genes via Ar in zebrafish, thus expanding our understanding of the relationship between testosterone and lipid metabolism in teleosts.


Assuntos
Androgênios , Lipogênese , Masculino , Animais , Androgênios/farmacologia , Lipogênese/genética , Peixe-Zebra/genética , Testosterona , Lipídeos , Transdução de Sinais , Cromatina
3.
Environ Toxicol Chem ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477699

RESUMO

Natural and synthetic environmental estrogens (EEs) are widespread and have received extensive attention. Our previous studies demonstrated that depletion of the cytochrome P450 17a1 gene (cyp17a1) leads to all-testis differentiation phenotype in zebrafish and common carp. In the present study, cyp17a1-deficient zebrafish with defective estrogen biosynthesis were used for the evaluation of EEs, as assessed by monitoring vitellogenin (vtg) expression. A rapid and sensitive assessment procedure was established with the 3-day administration of estradiol (E2), followed by examination of the transcriptional expression of vtgs in our cyp17a1-deficient fish. Compared with the control fish, a higher E2-mediated vtg upregulation observed in cyp17a1-deficient zebrafish exposed to 0.1 µg/L E2 is known to be estrogen receptor-dependent and likely due to impaired in vivo estrogen biosynthesis. The more responsive vtg expression in cyp17a1-deficient zebrafish was observed when exposed to 200 and 2000 µg/L bisphenol A (BPA) and perfluoro-1-octanesulfonate (PFOS). The estrogenic potentials of E2, BPA, and PFOS were compared and assessed by the feminization effect on ovarian differentiation in cyp17a1-deficient zebrafish from 18 to 50 days postfertilization, based on which a higher sensitivity of E2 in ovarian differentiation than BPA and PFOS was concluded. Collectively, through the higher sensitivity to EEs and the capacity to distinguish chemicals with different estrogenic potentials exhibited by the all-male cyp17a1-deficient zebrafish with impaired estrogen biosynthesis, we demonstrated that they can be used as an excellent in vivo model for the evaluation of EEs. Environ Toxicol Chem 2024;00:1-13. © 2024 SETAC.

4.
PLoS Genet ; 20(3): e1011170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451917

RESUMO

The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish. The additional depletion of fancl in cyp17a1-/-;dmrt1-/- zebrafish reversed the gonadal sex differentiation from all-ovary to all-testis (in cyp17a1-/-;dmrt1-/-;fancl-/- fish). Luciferase assay revealed a synergistic inhibitory effect of Dmrt1 and androgen signaling on fancl transcription. Furthermore, an interaction between Fancl and the apoptotic factor Tumour protein p53 (Tp53) was found in vitro. The interaction between Fancl and Tp53 was observed via the WD repeat domain (WDR) and C-terminal domain (CTD) of Fancl and the DNA binding domain (DBD) of Tp53, leading to the K48-linked polyubiquitination degradation of Tp53 activated by the ubiquitin ligase, Fancl. Our results show that testis fate in cyp17a1-/- fish is determined by Dmrt1, which is thought to stabilize Tp53 by inhibiting fancl transcription during the critical stage of sexual fate determination in zebrafish.


Assuntos
Testículo , Peixe-Zebra , Animais , Masculino , Feminino , Testículo/metabolismo , Peixe-Zebra/genética , Androgênios/genética , Androgênios/metabolismo , Gônadas/metabolismo , Diferenciação Sexual/genética , Estrogênios/genética
5.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339020

RESUMO

The mechanism of fish gonadal sex differentiation is complex and regulated by multiple factors. It has been widely known that proper steroidogenesis in Leydig cells and sex-related genes in Sertoli cells play important roles in gonadal sex differentiation. In teleosts, the precise interaction of these signals during the sexual fate determination remains elusive, especially their effect on the bi-potential gonad during the critical stage of sexual fate determination. Recently, all-testis phenotypes have been observed in the cyp17a1-deficient zebrafish and common carp, as well as in cyp19a1a-deficient zebrafish. By mating cyp17a1-deficient fish with transgenic zebrafish Tg(piwil1:EGFP-nanos3UTR), germ cells in the gonads were labelled with enhanced green fluorescent protein (EGFP). We classified the cyp17a1-deficient zebrafish and their control siblings into primordial germ cell (PGC)-rich and -less groups according to the fluorescence area of the EGFP labelling. Intriguingly, the EGFP-labelled bi-potential gonads in cyp17a1+/+ fish from the PGC-rich group were significantly larger than those of the cyp17a1-/- fish at 23 days post-fertilization (dpf). Based on the transcriptome analysis, we observed that the cyp17a1-deficient fish of the PGC-rich group displayed a significantly upregulated expression of amh and gsdf compared to that of control fish. Likewise, the upregulated expressions of amh and gsdf were observed in cyp19a1a-deficient fish as examined at 23 dpf. This upregulation of amh and gsdf could be repressed by treatment with an exogenous supplement of estradiol. Moreover, tamoxifen, an effective antagonist of both estrogen receptor α and ß (ERα and Erß), upregulates the expression of amh and gsdf in wild-type (WT) fish. Using the cyp17a1- and cyp19a1a-deficient zebrafish, we provide evidence to show that the upregulated expression of amh and gsdf due to the compromised estrogen signaling probably determines their sexual fate towards testis differentiation. Collectively, our data suggest that estrogen signaling inhibits the expression of amh and gsdf during the critical time of sexual fate determination, which may broaden the scope of sex steroid hormones in regulating gonadal sex differentiation in fish.


Assuntos
Hormônios Peptídicos , Processos de Determinação Sexual , Peixe-Zebra , Animais , Feminino , Masculino , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Estrogênios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Ovário/metabolismo , Hormônios Peptídicos/genética , Testículo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38421617

RESUMO

Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.


Assuntos
Triploidia , Peixe-Zebra , Masculino , Animais , Feminino , Tetraploidia , Sementes , Poliploidia , Ploidias
7.
FEBS J ; 291(8): 1813-1829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335062

RESUMO

Eukaryotic DNA replication depends on the primosome - a complex of DNA polymerase alpha (Pol α) and primase - to initiate DNA synthesis by polymerisation of an RNA-DNA primer. Primer synthesis requires the tight coordination of primase and polymerase activities. Recent cryo-electron microscopy (cryoEM) analyses have elucidated the extensive conformational transitions required for RNA primer handover between primase and Pol α and primer elongation by Pol α. Because of the intrinsic flexibility of the primosome, however, structural information about the initiation of RNA primer synthesis is still lacking. Here, we capture cryoEM snapshots of the priming reaction to reveal the conformational trajectory of the human primosome that brings DNA primase subunits 1 and 2 (PRIM1 and PRIM2, respectively) together, poised for RNA synthesis. Furthermore, we provide experimental evidence for the continuous association of primase subunit PRIM2 with the RNA primer during primer synthesis, and for how both initiation and termination of RNA primer polymerisation are licenced by specific rearrangements of DNA polymerase alpha catalytic subunit (POLA1), the polymerase subunit of Pol α. Our findings fill a critical gap in our understanding of the conformational changes that underpin the synthesis of the RNA primer by the primosome. Together with existing evidence, they provide a complete description of the structural dynamics of the human primosome during DNA replication initiation.


Assuntos
DNA Polimerase I , DNA Primase , Humanos , DNA Primase/genética , DNA Primase/metabolismo , Microscopia Crioeletrônica , DNA Polimerase I/genética , RNA , Replicação do DNA
8.
Biol Reprod ; 110(4): 761-771, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38374691

RESUMO

Reproduction is a high energy consuming process, so long-term malnutrition can significantly inhibit gonadal development. However, little is known about the molecular mechanism by which fasting inhibits reproduction. Our present study found that fasting could dramatically induce insulin-like growth factor binding protein 1 (IGFBP1) expression in the liver, hypothalamus, pituitary and ovaries of grass carp. In addition, IGFBP1a in the hypothalamus-pituitary-gonad axis could inhibit the development of gonads. These results indicated that fasting may participate in the regulation of fish gonadal development through the mediation of IGFBP1a. Further studies found that IGFBP1a could markedly inhibit gonadotropin-releasing hormone 3 expressions in hypothalamus cells. At the pituitary level, IGFBP1a could significantly reduce the gonadotropin hormones (LH and FSH) expression by blocking the action of pituitary insulin-like growth factor 1. Interestingly, IGFBP1a could also directly inhibit the expression of lhr, fshr, and sex steroid hormone synthase genes (cyp11a, cyp17a, and cyp19a1) in the ovary. These results indicated that IGFBP1a should be a nutrient deficient response factor that could inhibit fish reproduction through the hypothalamus-pituitary-ovary axis.


Assuntos
Carpas , Ovário , Animais , Feminino , Ovário/metabolismo , Hipófise/metabolismo , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Reprodução
9.
EMBO J ; 43(2): 225-249, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177503

RESUMO

Respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for cellular energy production and NAD+ homeostasis. Complex I mutations cause neuromuscular, mitochondrial diseases, such as Leigh Syndrome, but their molecular-level consequences remain poorly understood. Here, we use a popular complex I-linked mitochondrial disease model, the ndufs4-/- mouse, to define the structural, biochemical, and functional consequences of the absence of subunit NDUFS4. Cryo-EM analyses of the complex I from ndufs4-/- mouse hearts revealed a loose association of the NADH-dehydrogenase module, and discrete classes containing either assembly factor NDUFAF2 or subunit NDUFS6. Subunit NDUFA12, which replaces its paralogue NDUFAF2 in mature complex I, is absent from all classes, compounding the deletion of NDUFS4 and preventing maturation of an NDUFS4-free enzyme. We propose that NDUFAF2 recruits the NADH-dehydrogenase module during assembly of the complex. Taken together, the findings provide new molecular-level understanding of the ndufs4-/- mouse model and complex I-linked mitochondrial disease.


Assuntos
Doença de Leigh , Doenças Mitocondriais , Animais , Camundongos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Doença de Leigh/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , NAD/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
10.
J Nutr Biochem ; 123: 109473, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844767

RESUMO

Vitamin D (VD) is a steroid hormone that is widely known to play an important role in maintaining mineral homeostasis, and regulating various physiological functions. Our previous results demonstrated that the interruption of VD metabolism caused hyperglycemia in zebrafish. In the present study we further explored the mechanism that VD regulates glucose metabolism by maintaining intestinal homeostasis in zebrafish. Our results showed that the expression of several peptide hormones including gastric inhibitory peptide, peptide YY, and fibroblast growth factor 19 in the intestine decreased, while the expression of sodium glucose cotransporter-1 and gcg was increased in the intestine of the zebrafish fed with the VD3-deficient diet. Consistently, similar results were obtained in cyp2r1-/- zebrafish, in which endogenous VD metabolism is blocked. Furthermore, the results obtained from germ-free zebrafish exhibited that VD-regulated glucose metabolism was partly dependent on the microbiota in zebrafish. Importantly, the transplantation of gut microbiota collected from cyp2r1-/- zebrafish to germ-free zebrafish led to hyperglycemic symptoms in the fish, which were associated with the altered structure and functions of the microbiota in cyp2r1-/- zebrafish. Interestingly, the treatments with acetate or Cetobacterium somerae, a potent acetate producer, lowered the glucose contents whereas augmented insulin expression in zebrafish larvae. Notably, acetate supplementation alleviated hyperglycemia in cyp2r1-/- zebrafish and other diabetic zebrafish. In conclusion, our study has demonstrated that VD modulates the gut microbiota-SCFAs-gastrointestinal hormone axis, contributing to the maintenance of glucose homeostasis.


Assuntos
Hiperglicemia , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Vitamina D/metabolismo , Intestinos/microbiologia , Glucose/metabolismo , Vitaminas/metabolismo , Homeostase , Acetatos
11.
Food Chem Toxicol ; 181: 114103, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852353

RESUMO

There are several technical challenges and public issues concerning genome editing applications before they become viable in commercial aquaculture. Recently, we developed a novel strategy to generate all-female (AF) common carp, which exhibited a growth advantage over the control carp, using genetic editing through single gene-targeting manipulation. Here, we found that the body weight of the AF common carp was higher by 22.58% than that of the control common carp. Because the genotype of the AF common carp was cyp17a1+/-;XX, the contents of sex steroids were normally synthesized, as they were comparable to that of the control female carp. To evaluate the food safety of the AF carp, Wistar rats were fed a diet containing control female carp (control, C) or all-female (AF) carp at an incorporation rate of 5, 10 and 20% (w/w) for 90 days. Compared with those fed control carp, the rats fed AF common carp exhibited no significant difference in body weight, food intake, feed conversion ratio, hematology, serum biochemistry, urine test, relative organ weight, gross necropsy, and histopathological examination. This is the first food safety assessment of the farmed fish strain cultured using CRISPR/Cas9, which will further advance the fishery development of genome-edited animals.


Assuntos
Carpas , Edição de Genes , Feminino , Animais , Ratos , Ratos Wistar , Genótipo , Peso Corporal , Ração Animal/análise , Dieta
12.
Biol Sex Differ ; 14(1): 53, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605245

RESUMO

BACKGROUND: Sexually dimorphic mating behaviors differ between sexes and involve gonadal hormones and possibly sexually dimorphic gene expression in the brain. However, the associations among the brain, gonad, and sexual behavior in teleosts are still unclear. Here, we utilized germ cells-free tdrd12 knockout (KO) zebrafish, and steroid synthesis enzyme cyp17a1-deficient zebrafish to investigate the differences and interplays in the brain-gonad-behavior axis, and the molecular control of brain dimorphism and male mating behaviors. METHODS: Tdrd12+/-; cyp17a1+/- double heterozygous parents were crossed to obtain tdrd12-/-; cyp17a1+/+ (tdrd12 KO), tdrd12+/+; cyp17a1-/- (cyp17a1 KO), and tdrd12-/-; cyp17a1-/- (double KO) homozygous progenies. Comparative analysis of mating behaviors were evaluated using Viewpoint zebrafish tracking software and sexual traits were thoroughly characterized based on anatomical and histological experiments in these KOs and wild types. The steroid hormone levels (testosterone, 11-ketotestosterone and 17ß-estradiol) in the brains, gonads, and serum were measured using ELISA kits. To achieve a higher resolution view of the differences in region-specific expression patterns of the brain, the brains of these KOs, and control male and female fish were dissected into three regions: the forebrain, midbrain, and hindbrain for transcriptomic analysis. RESULTS: Qualitative analysis of mating behaviors demonstrated that tdrd12-/- fish behaved in the same manner as wild-type males to trigger oviposition behavior, while cyp17a1-/- and double knockout (KO) fish did not exhibit these behaviors. Based on the observation of sex characteristics, mating behaviors and hormone levels in these mutants, we found that the maintenance of secondary sex characteristics and male mating behavior did not depend on the presence of germ cells; rather, they depended mainly on the 11-ketotestosterone and testosterone levels secreted into the brain-gonad regulatory axis. RNA-seq analysis of different brain regions revealed that the brain transcript profile of tdrd12-/- fish was similar to that of wild-type males, especially in the forebrain and midbrain. However, the brain transcript profiles of cyp17a1-/- and double KO fish were distinct from those of wild-type males and were partially biased towards the expression pattern of the female brain. Our results revealed important candidate genes and signaling pathways, such as synaptic signaling/neurotransmission, MAPK signaling, and steroid hormone pathways, that shape brain dimorphism and modulate male mating behavior in zebrafish. CONCLUSIONS: Our results provide comprehensive analyses and new insights regarding the endogenous interactions in the brain-gonad-behavior axis. Moreover, this study revealed the crucial candidate genes and neural signaling pathways of different brain regions that are involved in modulating brain dimorphism and male mating behavior in zebrafish, which would significantly light up the understanding the neuroendocrine and molecular mechanisms modulating brain dimorphism and male mating behavior in zebrafish and other teleost fish.


Assuntos
Caracteres Sexuais , Peixe-Zebra , Animais , Feminino , Masculino , Encéfalo , Sistemas Neurossecretores , Transdução de Sinais
13.
Front Nutr ; 10: 1187283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305084

RESUMO

Glucose metabolism in fish remains a controversial area of research as many fish species are traditionally considered glucose-intolerant. Although energy homeostasis remodeling has been observed in fish with inhibited fatty acid ß-oxidation (FAO), the effects and mechanism of the remodeling caused by blocked glucose uptake remain poorly understood. In this study, we blocked glucose uptake by knocking out glut2 in zebrafish. Intriguingly, the complete lethality, found in Glut2-null mice, was not observed in glut2-/- zebrafish. Approxiamately 30% of glut2-/- fish survived to adulthood and could reproduce. The maternal zygotic mutant glut2 (MZglut2) fish exhibited growth retardation, decreased blood and tissue glucose levels, and low locomotion activity. The decreased pancreatic ß-cell numbers and insulin expression, as well as liver insulin receptor a (insra), fatty acid synthesis (chrebp, srebf1, fasn, fads2, and scd), triglyceride synthesis (dgat1a), and muscle mechanistic target of rapamycin kinase (mtor) of MZglut2 zebrafish, suggest impaired insulin-dependent anabolic metabolism. Upregulated expression of lipolysis (atgl and lpl) and FAO genes (cpt1aa and cpt1ab) in the liver and proteolysis genes (bckdk, glud1b, and murf1a) in muscle were observed in the MZglut2 zebrafish, as well as elevated levels of P-AMPK proteins in both the liver and muscle, indicating enhanced catabolic metabolism associated with AMPK signaling. In addition, decreased amino acids and elevated carnitines of the MZglut2 zebrafish supported the decreased protein and lipid content of the whole fish. In summary, we found that blocked glucose uptake impaired insulin signaling-mediated anabolism via ß-cell loss, while AMPK signaling-mediated catabolism was enhanced. These findings reveal the mechanism of energy homeostasis remodeling caused by blocked glucose uptake, which may be a potential strategy for adapting to low glucose levels.

14.
J Muscle Res Cell Motil ; 44(3): 165-178, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37115473

RESUMO

Myosin binding protein C (MyBP-C) is an accessory protein of the thick filament in vertebrate cardiac muscle arranged over 9 stripes of intervals of 430 Å in each half of the A-band in the region called the C-zone. Mutations in cardiac MyBP-C are a leading cause of hypertrophic cardiomyopathy the mechanism of which is unknown. It is a rod-shaped protein composed of 10 or 11 immunoglobulin- or fibronectin-like domains labelled C0 to C10 which binds to the thick filament via its C-terminal region. MyBP-C regulates contraction in a phosphorylation dependent fashion that may be through binding of its N-terminal domains with myosin or actin. Understanding the 3D organisation of MyBP-C in the sarcomere environment may provide new light on its function. We report here the fine structure of MyBP-C in relaxed rat cardiac muscle by cryo-electron tomography and subtomogram averaging of refrozen Tokuyasu cryosections. We find that on average MyBP-C connects via its distal end to actin across a disc perpendicular to the thick filament. The path of MyBP-C suggests that the central domains may interact with myosin heads. Surprisingly MyBP-C at Stripe 4 is different; it has weaker density than the other stripes which could result from a mainly axial or wavy path. Given that the same feature at Stripe 4 can also be found in several mammalian cardiac muscles and in some skeletal muscles, our finding may have broader implication and significance. In the D-zone, we show the first demonstration of myosin crowns arranged on a uniform 143 Å repeat.


Assuntos
Actinas , Tomografia com Microscopia Eletrônica , Ratos , Animais , Actinas/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Mamíferos/metabolismo
15.
Front Endocrinol (Lausanne) ; 14: 1054665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36864841

RESUMO

Introduction: 1α,25-dihydroxyvitamin D3 (1α,25[OH]2VD3) is a hormone known for its key roles in calcium absorption and nutrient metabolism. In teleost fishes, 1α,25(OH)2VD3 insufficiency causes impaired glucose metabolism and lipid oxidation. However, the cascade and mechanisms of 1α,25(OH)2VD3 and the vitamin d receptor (VDR) signaling are unclear. Results: In this study, two genes (vdra and vdrb) encoding paralogs of VDRs were genetically knocked out in zebrafish. Growth retardation and accumulated visceral adipose tissue have been observed in vdra -/-;vdrb -/- deficient line. In the liver elevated accumulation of triglycerides and suppressed lipid oxidation were detected. Morover significantly elevated 1α,25(OH)2VD3 levels were detected in vdra-/-;vdrb-/- zebrafish due to cyp24a1 transcription repression. Furthermore VDRs ablation Enhanced insulin signaling including elevated insulin/insra trancriptional levels, glycolysis, lipogenesis and promoted AKT/mTOR activity. Discussion: In conclusion, our present studies provides a zebrafish model with an elevated 1α,25(OH)2VD3 levels in vivo. The 1α,25(OH)2VD3/VDRs signaling promote lipid oxidation activity. However 1α,25(OH)2VD3 activity of regulation of glucose homeostasis through Insulin/Insr was independent of nuclear VDRs in teleosts.


Assuntos
Insulina , Fígado , Receptores de Calcitriol , Peixe-Zebra , Animais , Insulina/metabolismo , Lipídeos , Transdução de Sinais , Peixe-Zebra/genética , Receptores de Calcitriol/genética , Proteínas de Peixe-Zebra/genética
16.
Gut Microbes ; 15(1): 2187575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36879441

RESUMO

Although evidence has shown that vitamin D (VD) influences gut homeostasis, limited knowledge is available how VD regulates intestinal immunity against bacterial infection. In the present study, cyp2r1 mutant zebrafish, lacking the capacity to metabolize VD, and zebrafish fed a diet devoid of VD, were utilized as VD-deficient animal models. Our results confirmed that the expression of antimicrobial peptides (AMPs) and IL-22 was restrained and the susceptibility to bacterial infection was increased in VD-deficient zebrafish. Furthermore, VD induced AMP expression in zebrafish intestine by activating IL-22 signaling, which was dependent on the microbiota. Further analysis uncovered that the abundance of the acetate-producer Cetobacterium in VD-deficient zebrafish was reduced compared to WT fish. Unexpectedly, VD promoted the growth and acetate production of Cetobacterium somerae under culture in vitro. Importantly, acetate treatment rescued the suppressed expression of ß-defensins in VD-deficient zebrafish. Finally, neutrophils contributed to VD-induced AMP expression in zebrafish. In conclusion, our study elucidated that VD modulated gut microbiota composition and production of short-chain fatty acids (SCFAs) in zebrafish intestine, leading to enhanced immunity.


Assuntos
Microbioma Gastrointestinal , Vitamina D , Animais , Peixe-Zebra , Vitaminas , Acetatos , Clostridiales
17.
J Genet Genomics ; 50(4): 253-263, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669737

RESUMO

Recently, cilia defects have been proposed to contribute to scoliosis. Here, we demonstrate that coiled-coil domain-containing 57 (Ccdc57) plays an essential role in straightening the body axis of zebrafish by regulating ciliary beating in the brain ventricle (BV). Zygotic ccdc57 (Zccdc57) mutant zebrafish developes scoliosis without significant changes in their bone density and calcification, and the maternal-zygotic ccdc57 (MZccdc57) mutant embryos display curved bodies since the long-pec stage. The expression of ccdc57 is enriched in ciliated tissues and immunofluorescence analysis reveals colocalization of Ccdc57-HA with acetylated α-tubulin, implicating it in having a role in ciliary function. Further examination reveals that it is the coordinated cilia beating of multiple cilia bundles (MCB) in the MZccdc57 mutant embryos that is affected at 48 hours post fertilization, when the compromised cerebrospinal fluid flow and curved body axis have already occurred. Either ccdc57 mRNA injection or epinephrine treatment reverses the spinal curvature in MZccdc57 mutant larvae from ventrally curly to straight or even dorsally curly and significantly upregulates urotensin signaling. This study reveals the role of ccdc57 in maintaining coordinated cilia beating of MCB in the BV.


Assuntos
Escoliose , Peixe-Zebra , Animais , Encéfalo/metabolismo , Cílios/metabolismo , Escoliose/metabolismo , Tubulina (Proteína)/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Science ; 379(6630): 351-357, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701435

RESUMO

The molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides.


Assuntos
Biguanidas , Complexo I de Transporte de Elétrons , Animais , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Metformina/farmacologia , Mitocôndrias/metabolismo , Biguanidas/farmacologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-36708962

RESUMO

Vitellogenins (Vtgs) are essential for female reproduction in oviparous animals, yet the exact roles and mechanisms remain unknown. In the present study, we knocked out vtg1, which is the most abundant Vtg in zebrafish, Danio rerio via the CRISPR/Cas 9 technology. We aimed to identify the roles of Vtg1 and related mechanisms in reproduction and development. We found that, the Vtg1-deficient female zebrafish reduced gonadosomatic index, egg production, yolk granules and mature follicles in ovary compared to the wide type (WT). Moreover, the Vtg1-deficient zebrafish diminished hatching rates, cumulative survival rate, swimming capacity and food intake, but increased malformation rate, and delayed swim bladder development during embryo and early-larval phases. The Vtg1-deficiency in female broodstock inhibited docosahexaenoic acid-enriched phosphatidylcholine (DHA-PC) transportation from liver to ovary, which lowered DHA-PC content in ovary and offspring during larval stage. However, the Vtg1-deficient zebrafish increased gradually the total DHA-PC content via exogeneous food intake, and the differences in swimming capacity and food intake returned to normal as they matured. Furthermore, supplementing Vtg1-deficient zebrafish with dietary PC and DHA partly ameliorated the impaired female reproductive capacity and larval development during early phases. This study indicates that, DHA and PC carried by Vtg1 are crucial for female fecundity, and affect embryo and larval development through maternal-nutrition effects. This is the first study elucidating the nutrient and physiological functions of Vtg1 and the underlying biochemical mechanisms in fish reproduction and development.


Assuntos
Ovário , Peixe-Zebra , Animais , Feminino , Vitelogeninas/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Fígado , Reprodução/fisiologia , Lecitinas
20.
Zootaxa ; 5380(5): 487-490, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38221296

RESUMO

A new species of the genus Mongolotettix Rehn, 1928 from Henan, China is described in this paper. The new species Mongolotettix. jigongshanensis sp. nov. is allied to M. hubeiensis Zheng et al, 2017, but differs from latter by vertical diameter of eye 2.0 times horizontal diameter in male, cubital vein of tegmen reaching the apex in male, epiphallus with distinct projection on both inner sides, vertical diameter of eye 1.5 times the horizontal diameter and length of subocular furrow in female and tegmina of female reaching the middle of 2nd abdominal tergite. Type specimens are deposited in the Shanghai Entomological Museum, Chinese Academy of Sciences, Shanghai, 200032, China.


Assuntos
Gafanhotos , Ortópteros , Masculino , Feminino , Animais , China , Estruturas Animais , Tamanho Corporal , Tamanho do Órgão , Distribuição Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...